Sinn und Unsinn um Maximalpuls-Ermittlung

Von Dr. Winfried Spanaus

Ein 40-jähriger Läufer müsste nach dieser Formel (220-40) eine maximale Herzfrequenz (Hfmax) von 180 Schlägen pro Minute (Schl./min) besitzen. Von diesem Ausgangswert errechnet er nun seine Intensitätsbereiche. Zum Beispiel steuert er seine Regenerationsläufe mit einer Herzfrequenz von 60–70% seiner Hfmax also in einem Intervall von 108–126 Schl./min, und seine wettkampfspezifischen Leistungs- und Wettbewerbläufe gestaltet er mit mindestens 90% der Hfmax, also über 162 Schl./min.

Alte Irrtümer

Wer weiß eigentlich genauer über diese Formel, die in den Köpfen vieler Ausdauersportlern herumwirbt? Wer weiß, dass Prof. Wildor Hollmann unter jeweiliger Maximalbelastung von 3-5 Minuten Dauer auf dem Fahrradometer die im folgenden genannten

<table>
<thead>
<tr>
<th>Alter</th>
<th>20-30 Jahre</th>
<th>31-40 Jahre</th>
<th>41-50 Jahre</th>
<th>51-60 Jahre</th>
<th>61-70 Jahre</th>
<th>71-80 Jahre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hfmax (Schl./min)</td>
<td>195</td>
<td>189</td>
<td>182</td>
<td>170</td>
<td>162</td>
<td>145</td>
</tr>
</tbody>
</table>

Tabelle 1: Hfmax-Werte bei 3-5-minütiger Maximalbelastung auf dem Fahrradometer (Hollmann 1963)

Fehler Nr 1: Die Herzfrequenz verhält sich in verschiedenen Sportarten unterschiedlich. Das heißt der Ausdauersportler muss seine Trainings- als auch Wettkampfherzfrequenz nach der Sportart ausrichten. Er muss beim Laufen eine andere Herzfrequenz wählen als beim Radfahren, Schwimmen oder Inlineskaten. Triathlon,

<table>
<thead>
<tr>
<th>Autor</th>
<th>Geschlecht</th>
<th>Formel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rost/Hollmann</td>
<td>w/m</td>
<td>220 – Lebensalter</td>
</tr>
<tr>
<td>Lagerström/Graf</td>
<td>w/m</td>
<td>220 – 1/2 Lebensalter</td>
</tr>
<tr>
<td>Edwards</td>
<td>M</td>
<td>214 – 1/2 LA · 0,11 (Körpergewicht in kg)</td>
</tr>
<tr>
<td>Edwards</td>
<td>W</td>
<td>210 – 1/2 LA · 0,11 (Körpergewicht in kg)</td>
</tr>
<tr>
<td>Neumann</td>
<td>W/m</td>
<td>200 – 1/2 Lebensalter</td>
</tr>
<tr>
<td>Neumann</td>
<td>W/m</td>
<td>210 – 0,8 Lebensalter</td>
</tr>
<tr>
<td>Hills</td>
<td>W</td>
<td>226 – Lebensalter</td>
</tr>
<tr>
<td>Hills</td>
<td>M (trainiert)</td>
<td>205 – 1/2 Lebensalter</td>
</tr>
<tr>
<td>Hills</td>
<td>W (trainiert)</td>
<td>211 – 1/2 Lebensalter</td>
</tr>
<tr>
<td>Hills</td>
<td>M (untrainiert)</td>
<td>214 – 0,8 Lebensalter</td>
</tr>
<tr>
<td>Hills</td>
<td>W (untrainiert)</td>
<td>209 – 0,7 Lebensalter</td>
</tr>
<tr>
<td>Hills</td>
<td>W/m (stark überwiegend)</td>
<td>200 – 0,5 Lebensalter</td>
</tr>
</tbody>
</table>

Tabelle 2: Verschiedene Formeln zur Berechnung der Hfmax (Spanaus 2001)

Lauen mit Herzfrequenzmesser wird immer populärer. Foto: Spanaus
sportler wissen, dass sie bei gleicher Intensität im Laufen eine höhere Herzfrequenz erreichen als beim Radfahren. Allgemein gilt die Regel, dass in der Sportart mit dem höheren Kraftansatz eine niedrigere Hfmax erreicht wird.

Fehler Nr. 2: Hollmann zieht für seine Untersuchungen „sporttreibende Personen“ heran, sagt aber nichts aus über die Leistungsstand dieser Gruppe. Entscheidend für das Herzfrequenzverhalten ist aber auch der Grad der Trainingstherapie. Fasst jeder, der über einen längeren Zeitraum seine Herzfrequenzverhalten beobachtet hat, dürfte mit besseres Training zu einem niedrigeren Ruheherzfrequenz oder Belastungs-herzfrequenz genommen haben.

Lageström/Gräf behaupten, dass die Hfmax eines 50-Jährigen statistisch 195 Schläge/min beträgt und nicht nur 170 Schläge/min. Man stellt sich also diesen Unterschied von 25 Schläge/min zur Berechnung der Trainingsherzfrequenz vor. Der Läufer müsste wesentlich härtere Trainingsleistungen durchführen als nach der Hollmann-Formel.

Neue Bestzeiten in Aussicht oder totale Überforderung? Hierzu muss geklärt werden, inwieweit die maximale Herzfrequenz wirklich vom Alter abhängig ist. Alle o.g. Formeln berücksichtigen mehr oder weniger stark das Alter als als größten Einflußfaktor auf die Herzfrequenz.

In der allgemein anerkannten Tabelle 3 sind die Faktoren aufgelistet, die Auswirkungen auf die Herzfrequenz haben und die sowohl beim praktischen Einsatz der Ausbelastungsstests als auch bei dem hieraus abgeleiteten Herz frequenzgesteuerten Training immer berücksichtigt werden müssen.

Unter diesem Hintergrund und den oben gestellten Fragen wurde im Sportinstitut der Universität Düsseldorf eine größere Untersuchung an Langläufern aller Altersklassen durchgeführt, die alle in der Lage waren, 10 km zu laufen, und mindestens dreimal pro Woche trainierten. Insgesamt wurden 2,500 Ausbelastungsstests zur Bestimmung der maximalen Herzfrequenz beim laufen durchgeführt. Das Ergebnis waren Hfmax-Werte, die höher waren als nach Hollmann und vielen anderen Formeln. Die daraus ergebende Tabelle 4 zeigt, wie die Trainingssituation im Falle von trainierten Langläufern bei der Orientierung an fünf gängigen Formeln zur Erreichung der Hfmax jeweils zu bewerten ist.

Hierbei folgt ein ausführlicher Bericht in der nächsten Ausgabe (siehe auch Beitrag Long Jog als Eckpfeiler des Trainings in SPIRIDON 10/01, Seite 32).

<table>
<thead>
<tr>
<th>Herzfrequenz-Formel:</th>
<th>Sportler</th>
<th>Alters</th>
<th>Trainingsintensität durch Herzfrequenzsteuerung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 - Lebensalter = Hfmax</td>
<td>Männer/Frauen</td>
<td>ab 20 Jahre</td>
<td>zu niedrig</td>
</tr>
<tr>
<td>220 - ½ Lebensalter = Hfmax</td>
<td>Männer/Frauen</td>
<td>ab 20 Jahre</td>
<td>zu hoch</td>
</tr>
<tr>
<td>220 - 0,8 Lebensalter = Hfmax</td>
<td>Männer/Frauen</td>
<td>ab 20 Jahre</td>
<td>am ehesten angemessen</td>
</tr>
<tr>
<td>210 - 0,8 Lebensalter = Hfmax</td>
<td>Männer/Frauen</td>
<td>ab 20 Jahre</td>
<td>zu niedrig</td>
</tr>
<tr>
<td>200 - ½ Lebensalter = Hfmax</td>
<td>Männer/Frauen</td>
<td>ab 20 Jahre</td>
<td>zu niedrig</td>
</tr>
</tbody>
</table>

Tabelle 4: Steuerung der Trainingsintensität nach ausgewählten Herzfrequenzformeln (Spanaus 2001)